DSKE temadag 23. sept. 2014 Ernæring og livskvalitet

Hvad koster livskvalitet? Økonomi med patienten i centrum

Rigshospitalet University of Copenhagen

Three month post-discharge intervention with protein and energy rich supplements improve muscle function and quality of life (SF-36) in malnourished patients with non-neoplastic gastrointestinal disease. Norman et al. Clin Nutr 2008;27:48-56

Table 3 Changes of quality of life during the study period.							
(%)	ONS patients ($n = 38$)			DC patients (n = 42)			
	Baseline	3 Months	Р	Baseline	3 Months	Р	
Physical functioning	54.5 ± 25.8	77.6 ± 23.6	< 0.0001	52.1 ± 26.7	60.6±27.9	0.030	
Role physical	25.7 ± 37.0	65.5 ± 40.2	< 0.0001	21.8 ± 31.5	34.8 ± 41.4	n.s.	
Role emotional	65.7 ± 44.1	91.0 ± 25.6	< 0.001	64.9 ± 45.2	81.3 ± 35.8	n.s.	
Social functioning	67.2 ± 34.8	86.5 ± 23.4	< 0.001	66.3 ± 30.5	75.6 ± 32.4	n.s.	
Bodily pain	50.3 ± 39.5	68.3 ± 34.5	0.013	44.2 ± 35.7	61.4 ± 34.1	0.019	
General health	41.1 ± 16.3	54.3 ± 21.1	< 0.0001	42.2 ± 16.8	43.9 ± 22.6	n.s.	
Vitality	35.9 ± 19.6	57.4 ± 23.1	< 0.0001	32.2 ± 21.4	44.0 ± 19.8	0.014	
Mental health	56.2 ± 24.2	$\textbf{72.8} \pm \textbf{20.6}$	< 0.0001	59.1 ± 23.2	67.3 ± 20.9	n.s.	

The change in hand-grip strength correlated with the change in physical functioning (r = 0.30, P = 0.009) and physical role (r = 0.26, p = 0.023).

Utility and cost utility

- The 36 items of SF-36 can each be answered at several levels, which can generate many millions of health states (if an average of 5 levels per item: 5^36 = about 14 * 10²⁴ possible combinations of health states)
- How do the states compare?
 Which one is most important to the patient?

Brazier et al. J Clin Epidemiol 1998;51:1115-28.

www.nice.org.uk: Methods for the development of public health guidance 3rd edition 2012

- Cost—utility analysis will be required routinely
- If there are not enough data to estimate QALYs gained, an alternative measure of cost-effectiveness may be considered (such as life years gained, cases averted or a more diseasespecific outcome)
- Cost-benefit analysis: a balance sheet in which costs and benefits are weighed up against each other, measured in the same unit (£)
- Cost—consequences analysis: accepts benefits that cannot be measured in the same units. Different decision makers will place their own weights on the different benefits and on costs, implicitly if not explicitly

Norman: Follow-up by a cost-effectiveness analysis in 2011, but first **intro**:

A cost effectiveness analysis reports the cost of an intervention relative to a health benefit that can be quantified using a wide variety of units, such as lives saved, life years saved, cases of disease prevented, or additional symptom-free days.

Cost-utility analyses quantify health benefits in terms of gained quality adjusted life years (QALYs).

QALY: Quality Adjusted Life Years

QALY measured = a given Utility x duration (years)

Utility = Willingness to pay for a preferred item (consumer utility)

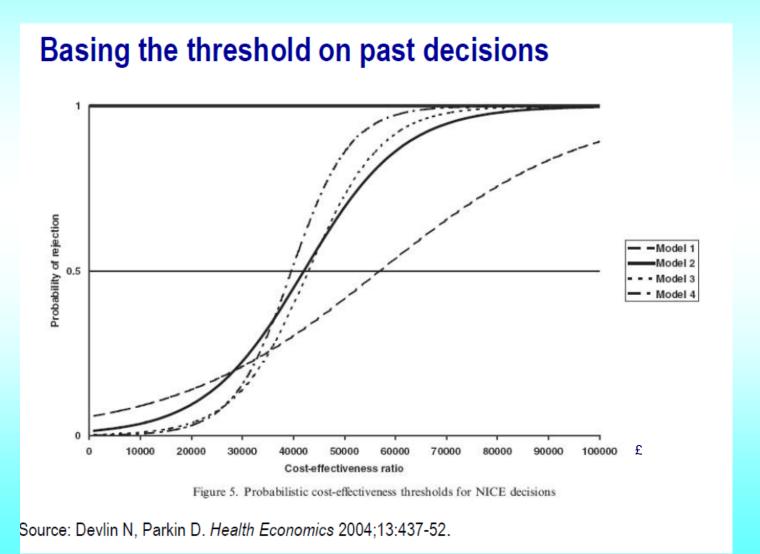
Cost-effectiveness analysis registry online https://research.tufts-nemc.org/cear4/Home.aspx#

In clinical studies:

Utility is the patient's preference for one Quality of Life health state over another, expressed on a scale from 0 to 1.

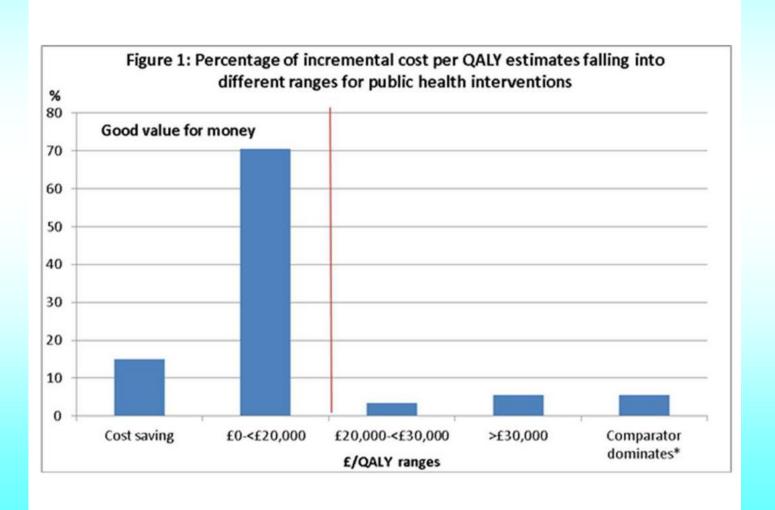
0 = dead; 1= fully alive

Utility is 'measured' by a simplified questionnaire, developed from common Quality of Life questionnaires and 'calibrated' against patients' or volunteers' expression of preference for one utility state over another


Cost-utility = society's willingness to pay for the patient's preference

Common upper threshold for society's willingness to pay: 2 x Gross Domestic Product (GDP) per capita for a QALY

Upper threshold for introducing a new therapy in Europe: ≈ €20.000 - € 50.000 for a QALY


In the UK, the National Institute for Clinical Excellence (NICE) does not have "hard" decision rules, but new medical technologies with costs of £20,000-30,000/QALY are typically accepted.

Actual historical data in the UK:

200 cost-effectiveness estimates of various interventions that informed public health guidance published by NICE between 2006 and 2010

www.nice.org.uk/advice/lgb10/chapter/judging-the-cost-effectiveness-of-public-health-activities

Utility derived from SF-36: SF-6D

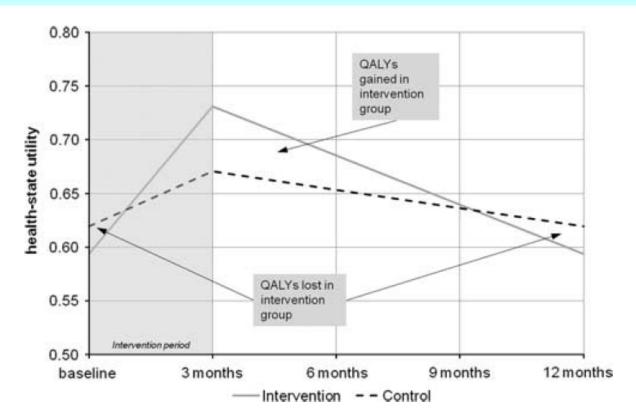
Brazier et al. J Health Econ 2002;21:271-92.

Utility is...the price which a person is willing to pay for the fulfillment of his desire.

Alfred Marshall. 1920

Physical functioning
Role physical
Role emotional
Social functioning
Bodily pain
General health
Vitality
Mental health

- 1) Number of 'dimensions' reduced to 6 by factor analysis
- 2) Each dimension given 2-6 well-defined levels
- 3) Preference among 250 different health states evaluated by about 800 healthy volunteers
- 4) Each volunteer chose and ranked only
 6 of the 250 health states
 (Good health → Almost dead)
- 5) Expressed as a value between 1 and 0.


Cost-effectiveness of a 3-month intervention with oral nutritional supplements in disease-related malnutrition: a randomised controlled pilot study.

Norman et al. Eur J Clin Nutr 2011;65:735-42.

Change in utility during intervention, mean (95% CI)					
	Counselling (N=54)	Supplement (N=60)			
Baseline	0.62 (0.58-0.66)	0.59 (0.56-0.63)			
At 3 months	0.67 (0.64-0.71)	0.73 (0.70-0.76)			
Change	0.07 (0.03-0.10)	0.13 (0.10-0.16)*			
		*P=0.022			

Cost-effectiveness of a 3-month intervention with oral nutritional supplements in disease-related malnutrition: a randomised controlled pilot study.

Norman et al. Eur J Clin Nutr 2011;65:735-42.

Figure 2 Concept of quality adjusted life years (the area under the curves can be interpreted as the quality-adjusted life years associated with intervention or control strategy).

QALY =
Qyality of life adjusted
life years

- Increase in utility assumed to disappear within a year
- QALY calculated from area-undercurve (AUC) = year-averaged utility

Cost-effectiveness of a 3-month intervention with oral nutritional supplements in disease-related malnutrition: a randomised controlled pilot study.

Norman et al. Eur J Clin Nutr 2011;65:735-42.

Counselling	Supplement				
(N=54)	(N=60)				
0.62 (0.60-0.63)	0.66 (0.64-0.68)				
21 (0-73)	561 (514-609)				
0.045^{\S}					
540					
12,099					
(vs. max accepted = € 20.000 - € 50.000)					
§ Equivalent to extra 16 days of full quality of life per year for each patient					
	(N=54) 0.62 (0.60-0.63) 21 (0-73) 0.62 (vs. max accepted =				

 $(=0.045 \times 365)$

Konklusioner

Livskvalitet koster

- Det er økonomi med patienten i centrum

Rigshospitalet University of Copenhagen